Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?
نویسندگان
چکیده
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
منابع مشابه
Thermal Tolerance in Anuran Embryos with Different Reproductive Modes: Relationship to Altitude
Anurans are ectothermic animals very sensitive to temperature, mainly during the embryonic stage. In addition, environmental temperature decreases with altitude, and the amphibian fauna changes. Therefore, we studied the relationship between the embryonic thermal tolerances of twelve species of anurans and the temperatures of their microhabitat along an altitudinal gradient from 430 m to 2600 m...
متن کاملDoes Ecophysiology Determine Invasion Success? A Comparison between the Invasive Boatman Trichocorixa verticalis verticalis and the Native Sigara lateralis (Hemiptera, Corixidae) in South-West Spain
BACKGROUND Trichocorixa verticalis verticalis, a native of North America, is the only alien corixid identified in Europe. First detected in 1997 in southern Portugal, it has spread into south-west Spain including Doñana National Park. Its impact on native taxa in the same area is unclear, but it is the dominant species in several permanent, saline wetlands. METHODOLOGY/PRINCIPAL FINDINGS We i...
متن کاملMaster of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas.
As global warming accelerates, there is increasing concern about how ecosystems may change as a result of species loss and replacement. Here, we examined the thermal physiology of the European green crab (Carcinus maenas Linnaeus 1758), a globally invasive species, along three parallel thermal gradients in its native and invasive ranges. At each site, we assessed cardiac physiology to determine...
متن کاملThe role thermal physiology plays in species invasion
The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate wh...
متن کاملPhysiological plasticity in a successful invader: rapid acclimation to cold occurs only in cool-climate populations of cane toads (Rhinella marina)
Physiological plasticity may facilitate invasion of novel habitats; but is such plasticity present in all populations of the invader or is it elicited only by specific climatic challenges? In cold-climate areas of Australia, invasive cane toads (Rhinella marina) can rapidly acclimate to cool conditions. To investigate whether this physiological plasticity is found in all invasive cane toads or ...
متن کامل